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Why Quantum Chemical Reaction
Kinetics Studies?
= Only Option When Experiments are not Possible or Limited

= Combustion Conditions of P & T too Extreme to Probe

= Accuracy (E,) can be as Good or Better Than Experiments

» Thermochemical Accuracy Possible
= |deal for Branching Ratio Predictions for Closely Competing Reactions

= Can be a Cost Effective Alternate to Experiments

» Hardware & Software Efficiencies Improving Constantly

= A Balanced Approach to Kinetics Calculations Recommended
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Our Interest In Combustion
Chemistry

= Autoignition Chemistry

= Low Temperature/Low Pressure Conditions
= Bi-propellants

= Decomposition Chemistry

= Emerging Energetic Materials
= Explosives
» |onic Liquid Propellants

DISTRIBUTION A: Approved for public release, distribution unlimited



N,H; + NO, Reaction Kinetics
Perspective

= Radical Chemistry Modelling
= N,H,/NO, Autoignition

= Recent Works
= Only Theoretical Studies

= See Raghunath et al., Adv. Quantum Chem., 69, 253 (2014)............. Koog k. 1atm = (2.3 x 10°1)
= See Daimon et al., Sci. Tech. Energetic Materials, 74, 17 (2013).......Kagg K 1atm = (1.6 x 10714) ?
= See Daimon et al., J. Propul. Power, 30, 707 (2014).........c..cc....... Koog k. 1atm = (1.9 X 10-1)

= Also, See Kanno et al., DOI: 10.1021/acs.jpca.5b00987 (2015)
CH;NNH, + NO, — Products, k = (2.2 x 10-13)

trans-CH;NHNH + NO, — Products k = (1.4 x 10-'2)
cis-CH;NHNH + NO, — Products k = (1.2 x 10-'2) cm® molecule! s™

= This work

» Pulsed Laser Photolysis - Flow Tube MS Experiments
» First Experimental Determination
= Ab initio Chemical Kinetics

» Multi-reference Second-order Perturbation and Coupled-cluster Methods: PES (Potential
Energy Surface)

» RRKM (Rice—Ramsperger—Kassel-Marcus) Theory and Master Equation Simulations: k
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Pulsed Laser Photolysis
Flow Tube Apparatus

Flow-tube reactor

>Vacuum chamber

g Gas mixture

-




N,H; Source &
Flow Tube Chemistry

N,H, + hv — N,H; + H G193 nm = 450 x 1020 cm? molec 1
NO, + H — NO + OH k, =1.3 x10'° cm3 molecule! s 2
N,H, + H — N,H; + H, k; = 1.4 x 1013 cm3molecule!s? 3
N,H, + OH — N,H; + H,O k,=3.6 x10'* cm3 molecule! st 4
N,H, + NO, — N,H, + HONO Ks 5
N,H; + NO, — other products Kg 6
HONO — loss k,=1s"? 7
N,H; — loss kg=10st 8
H — loss kg=10s" 9
OH — loss kio=10s" 10

[N,H,] =5 x 104 [H] =5 x 10%?, [NO,] =1 x 103 to 5 x 103 molecule cm-3
DISTRIBUTION A: Approved for public release, distribution unlimited

[HONO] = (ks[NO,][N,Hs] ){e*7 — e* }/(k’ - ky)

k' = (ks + ke)INO,] + kg




signal (arb units)

Typical [HONQO] Temporal Profile

N,H; + NO,

Reaction Kinetics

Second-order Plot
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Potential Energy Surface for
N.H.NO, Adduct Formation

CASPT2/CBS
RCCSD(T)/CBS/ICASPT2
RCCSD(T)/CBS//B3LYP
Unit: keal/mol
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Potential Energy Surface for
N.H-ONO Adduct Formation
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Branching Rate Coefficients (2 m
N,) & High Pressure Limit Versus T _
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MNB & DNB Energetic Materials

Perspective
= MNB & DNB

= Mononitrobiuret & 1,5-dinitrobiuret (less stable)
= promising explosives HMX RDX

= Recent Works

See Geith et al., Propellants, Explosives, Pyrotechnics, 29, 3 (2004)
" AH,mp(DNB) = (5195 + 300) kJ kg (bomb calorimetry and MP2/cc-pVTZ AH;) cf HMX 9435 & RDX 9560 kJ kg~
*  V,=8660 ms, cf HMX 9100 & RDX 8750 ms-!

See Geith et al., Combust and Flame, 139, 358 (2004)

= Recent synthesis (known since 1898 by Thiele) & decomposition mechanism studies
= |nitially NH,NO, released, followed by residues decomposing to give HNCO

See Liu et al., J. Phys. Chem. A 115, 8064 (2011) & Sun et al., J. Phys. Chem. A 118, 2228
(2013)

= Quasi-classical direct dynamics trajectory simulations to understand DNB decomposition
= Elimination of HNN(O)OH intermediate identified
See Suntsova et al., Struct. Chem., 24, 745 (2013)

= Electronic structure of DNB was studied by two-dimensional B3LYP potential energy scans
= Solid- and gas-phase conformers differ

= This work

» PESs for the thermal decomposition of MNB and DNB investigated

» Temperature and pressure-dependent rate coefficients were calculated using micro-canonical
transition state theory with master equation simulations
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MNB & DNB Structures
(MO6-2X/aug-cc-gVTZ level)

.yz ? = H-bond Stabilized Conformers

= MNB(C,) O
3.21 ,974 1.992

MINB (C,) MNB (C;)

*‘:‘:‘

MNB (tra

= MNB(trans) +4.82
= MNB(C,) +6.38
= MNB(cis) +7.95 kcal/mol

= Double H-bond Stabilized Conformers
= DNB(C,) O
= DNB(C,) +1.22 1926

4.21
= DNB(C,) +7.82kcalimol g , O}Sﬁ?))& °9%. :%g o®

DNB (C DNB (Cy) DNB (Cy,)
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Stationary Point Energies for MINB
Thermal Decomposition

- aug-cc-pVDZ aug-cc-pVTZ MO6-2X/aug-cc-pVTZ
0.00 0.00 0.00
33.86 3318 33.99
18.50 2051 19.43
29.42 26.85 27.08
3458 3373 34.66
T 27.75 26.20 26.41
30.43 32.17 32.95
51.41 51.34 52.75
6.41 6.38 5.86
T53 41.05 40.35 41.00
. 3423 32.65 3247
40.33 38.46 38.77
53.77 5471 53.71
34.38 3253 30.68
57.25 56.99 58.43
TS5 7.84 8.29 71.32

All energies include zero-point corrections and are in kcal/mol relative to the global energy
minimum of MNB (C,).

Within 1.0 keal/mol for the barrier heights, and 1.8 kcal/mol for endothermicities compared to

RCCSD(T)/cc-pV=Z/IM06-2X/aug-cc-pVTZ, implying that the M06-2X/aug-cc-pVTZ energies
are good for larger analogous systems.
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Potential Energy Surface for MNB
Decomposition

RCCSD(T)/cc-pVoZ//M06-2X/aug-cc-pVTZ

b 9 Y
N02 + ..J'J
e 9

LS

Unit: kcal/mol
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100 \‘ — = k,MNB(C)
| Bn g K MNB (CQ)
o o \‘ cm - kyMNB(C)
i b ~ g - kg MNB(C,)
e 'Q_ B ks, MNB (C,)
e

<

.o

= 10
108
102
10
10
104
10¢
102 :

as 10 15 20

Temperature 1000/T(K)
High-pressure rate limit for MNB (C,) and MNB (C,)
primary thermal decomposition channels

Ky «=1.32 x 1013 T0131 exp (-17474.7/T)
Ky .= 1.05 x 1013 T0112 exp (-17692.1/T)
ks .= 1.15 x 1014 T0.117 exp (-18011.4/T)
K, =126 x 104 T25% exp (-21375.5/T)

ks .= 2.07 x 1023 T-2002 exp (-27714.8/T)

ADb initio Kinetics of MNB Thermal
Decomposition
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Temperature 1000/T(K)

Rate coefficients at pressure of 1 atm for MNB (C,)
and MNB (C,) primary thermal decomposition
channels

Below 1200 K, HNCO & HNN(O)OH eliminations
dominate, consistent with experimental work of
Gieth et al. 2004

Above 1200 K, NO; elimination dominates

MNB (C,) and MNB (C,) primary thermal
decomposition channels

Pressure dependence of unimolecular decomposition
evaluated using AE ;,,,, = 200 x (T/300)%%5 cm-! energy
transfer probability model

Strong pressure dependences observed

HNCO & HNN{O)OH eliminations are competitive &
dominate below 2500 K

NO, elimination becomes competitive only above 2500 K

R2 & R3 (HNCO) & R1 (HNN(O)OH) are primary (product)
channels at ignition temperatures

Hten




Stationary Point Energies for DNB
Thermal Decomposition

___o-oo _

All energies include zero-point corrections and are in kcal/mol relative to the global energy minimum of DNB (C,).
Predicted energy barrier heights from these two levels of calculation show excellent agreement, but discrepancy

reaches to 2.1 kcal/mol for reaction endothermicities. Consequently, the M06-2X/aug-cc-pVTZ energies were
used for carrying out the kinetics analysis for DNB decomposition.
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4 Potential Energy Surface for DNB

osition
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ADb initio Kinetics of DNB Thermal

Decomposition

10 4

10° 4

108

107 4

108

k(s

05 1.0 15

Temperature 10

High-pressure rate limit for DNB (
primary thermal decomposit

ks, . = 3.22 x 10 T0289 exg
k; . =8.49 x 106 T0882 exp
kg »=9.72 x 10" T-0248 exp

DNB (TS8)

@49,

‘?‘L}

MNEB (TS2)

DNB (TS7)

108

107 -

—e k; DNB (C,)
kg, DNB (C,,)

106 = -

108 4
10 A
10° A
i 102 A
10" 4
100 4
104

1024

102 | T — |
0.5 1.0 1.5 2.0

Temperature 1000/T(K)

Rate coefficients at pressure of 1 atm for DNB (C,,)
primary thermal decompeosition channels

ng pressure dependences observed

w 1200 K, HNN(Q)OH elimination dominates

kg' »=9.96 x 1023 72205 eXpT=ZrZzou.arry

Below 1500 K, HNN(O)OH elimination dominates
from DNB (C;,)

Above 1500 K, NO, elimination dominates
from DNB (C3,)

Similar trend seen in Liu et al,, 2011, and good
agreement above 1500 K

kg for HNN(O)OH elimination from DNB is much larger
than k; for HNN{O)OH from MNE below 800 K

Consistent with TS1 (and TS3) energy higher than TS8
{Also, TS2 higher than TS7)

TS58 is stabilized by additional intramolecular H-bonding
(Also, TS7 is a late transition state)

DNB is less stable than MNB

Present quantitative interpretations
are consistent with experimental work
of Gieth et al. 2004




Conclusions &

Acknowledgements

= N,H; + NO, addition reaction is fast
= trans-N,H, + trans-HONO main products

» PES surface characterized
= Calculated reaction rate coefficients in agreement with experiments

= MNB & DNB stabilized via 6-member-ring moieties involving intramolecular H-bonding
= Solid state conformers have smallest dipole moment
= Energy barriers and endothermicities at the M06-2X/aug-cc-pVTZ level of theory show
remarkable agreement with the values obtained from RCCSD(T)/cc-pV~Z//M06-2X/aug-cc-
pVTZ computations
= Former level of theory should be applicable to larger analogous systems
= MNB decomposition initiated by the elimination of HNCO and HNN(O)OH, the latter is also
released in DNB (C,,) decomposition

= Energy barrier for HNN(O)OH elimination in DNB is 6.60 kcal/mol lower than that in MNB

due to an extra hydrogen bond in the transition state for the former
= DNB less stable than MNB (as previously shown by experiments)
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